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ABSTRACT

Each probabilistic automaton M over an alphabet A defines
a probability measure Probas on the set of all finite and in-
finite words over A. We can identify a k letter alphabet A
with the set {0,1,...,k — 1}, and, hence, we can consider
every finite or infinite word w over A as a radix k expansion
of a real number X (w) in the interval [0,1]. This makes
X (w) a random variable and the distribution function of M
is defined as usual: F(z) := Proby{w : X(w) < z}. Uti-
lizing the fixed—point semantics (denotational semantics),
extended to probabilistic computations, we investigate the
distribution functions of probabilistic automata in detail.
Automata with continuous distribution functions are char-
acterized. By a new, and much more easier method, it is
shown that the distribution function F(z) is an analytic
function if it is a polynomial. Finally, answering a question
posed by D. Knuth and A. Yao, we show that a polynomial
distribution function F(z) on [0,1] can be generated by a
probabilistic automaton iff all the roots of F'(z) = 0 in this
interval, if any, are rational numbers. For this, we define two
dynamical systems on the set of polynomial distributions
and study attracting fixed points of random composition of
these two systems.

Categories and Subject Descriptors
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In this paper we use the fixed point semantics (denota-
tional semantics) approach to probabilistic automata. In
classical approach, properties of states are in the focus of
attention; thus this approach leads to the theory of finite
Markov chains (see, for example, [7, 10]). But, here we at-
tend to external properties of automaton; we consider an
automaton as a black box and look at states as far as they
effect the external behavior of automaton. The classical the-
ory of probabilistic automata is concerned with automata as
acceptors, but we consider probabilistic automata as genera-
tors of random sequences. This approach in [6] is described
as the following general problem: suppose that there is a
source which provides uniform random bits, then by uti-
lizing a computational device from a predetermined class of
machines, which other distributions are possible to generate.
In this paper, the authors consider several natural classes of
machines, including the finite state automata.

Several other authors have considered similar problem.
For example, in [5] the authors study the problem of gener-
ating the uniform distribution on the solution set of a given
relation by probabilistic Turing machines which have access
to unbiased coins. The problem studied in [4] can be de-
scribed in the language of this paper as follows: generate fi-
nite probability distributions with finite computational trees
where the probability of edges are restricted.

In this paper we present a detailed study of distribution
function of probabilistic automata. Our approach is based
on the fixed—point semantics. This method has been ap-
plied successfully in various areas of computer science (see,
e.g., [3] and references there). We find the application of
this method to probabilistic computation, based on the pi-
oneering work [8], quiet natural and easy to apply. The
main contribution of this paper is the complete solution of
the problem posed in [6]: characterization of the polyno-
mial distributions which can be generated by probabilistic
automata. We prove that a polynomial distribution func-
tion F(z) can be generated by a probabilistic automaton if
and only if the only roots of F'(z) = 0 in the interval {0, 1],
if any, are rational numbers.

2. PROBABILITY MEASURES ON CPO’S

In this section we generalize the least fixed point approach
(see, e.g., [9, 11] for details) to the nondeterministic com-
putations. The nondeterministic computation can be con-
sidered without any probability, but considering probability
distributions on the domain of states enable us to make into
account various frequencies of possible outcomes and their
statistical evaluations. First we give basic definitions and



results.

A partially ordered set (poset) (D, E) is said to be a com-
plete partially ordered set (cpo) if it has a least element,
denoted by L, and for every increasing sequence (zn)n>1 of
its elements the least upper bound (lub) of (z,).>1, denoted
by Un>12n, does exist.

Let (D,C) and (D',C') be two cpo’s. Let f: D — D’
be an increasing function; i.e., f(z) C' f(y) if 2 C y. Then
we say f is continuous if it preserve lub of increasing se-
quences; i.e., for every increasing sequence (zr)n>1 it holds
that f (Unzlmn) = Un21f(11}n).

Let (D, C) be a cpo. A topology, called Scott topology,
is defined on D in the following way. A subset U C D
is open if and only if whenever z € U and z C y then
y € U, moreover if the lub of an increasing sequence (zn)n>1
belongs to U then z; € U for some ¢ [9, 11].

A fixed point of f: D — D, of a mapping of the cpo
D to itself, is an element z € D such that f(z) = z. The
least fixed point of f (if it exists) is the least element of
the set of all fixed points of f. Let D be a cpo with the
least element | and f: D — D be continuous. Then f has
a least fited point which actually is equal to Li,>:1 fI™(L);
here f™ is the n—fold iteration of f.

In this paper we consider a special cpo consisting of all
finite and infinite words over a finite alphabet, but this re-
striction is not necessary; in {8] the general case of probabil-
ity measure on an arbitrary cpo is studied.

Let A be a nonempty finite alphabet and A* and A* be
the set of all finite and infinite words over A, respectively.
The empty word, denoted by 1, is an element of A*. The
concatenation of words z and y, denoted by zy, is defined
if and only if z is a finite word. For every finite word z, we
denote the length of z by |z|.

Let D = A" UA® be ordered as follows: z C y if and
only if z is a prefix of y; i.e., y = zz for some 2 € D. It
is an easy fact that (D,C) is a cpo and the empty word is
its least element. Note that if z C y and z is infinite then
necessarily z = y.

Consider now the Scott topology on D, and let ¥ be the
class of Borel sets in D; i.e., ¥ is the o-algebra generated
by open sets in D {1]. For every finite word g € A* let

Vo:={z€D:qCz} (1)

These elements of ¥ are our basic tool in studying the
probabilistic automata. The subsets V,, ¢ € A*, from a
basis for the Scott topology on D.

A probability measure on D is a o-additive function
P: ¥ — [0,1] such that P(D) = 1. We denote the set of
all probability measures on D by Pr(D).

For each probability measure P, we write “P(z)” instead
of “P({z})”; and we define the support of P as

supp(P):={z € D:P(z)>0}.
If P(supp(P)) = 1 then we represent P by
{(z,P(z)) : = € supp(P) }.

The probability measure P is called finite measure if
supp(P) is a finite subset of A* and P(supp(P)) = 1. The
set of all finite probability measures on D is denoted by
FPr(D).

For probability measures P and P’ on D we let

PCp P

if and only if for every open subset U of D we have P(U) <
P(U).

In the sequel, we write simply “P C P’” instead of “P Cp
P"" whenever no ambiguity is possible.

In [8] it is proved that the ordered set (Pr(D),p) is a
cpo; its least element is {(1,1)}, the probability measure
concentrated on L.

THEOREM 2.1. For P and P’ in Px(D), P € P’ if and
only if for every finite word q € A*, P(V,) < P'(V,). More-
over, if for every finite word ¢ € A* we have P(V,) = P'(V,)
then P = P,

In (8] two important operations on Pr(D) are defined.
Here we give their definitions and basic properties.

Definition 1. For 0 < p < 1 and P,P' € Pr(D), the
random selection between P and P’ under the prob-
ability p is the probability measure

R(p,P,P):=p-P+(1—-p) P.

We often denote this probability measure by “p - P + (1 —
p) . P’” .

Definition 2. Suppose that f: D — D is a continuous
function. The probabilistic extension of f, denoted by
ext(f), is the function ext(f): Pr(D) — Pr(D) defined as
follows ext(f)(P)(B) := P(f~!(B)), for every P € Pr(D)
and B € U.

It is easy to show that p- P+ (1—p)- P’ and ext(f)(P) are
indeed probability measures. If f is a continuous function
from D to itself, p € {0,1] and P and P’ are in Pr(D) then

ext(f)(p P+ (1-p)- P’)
=p-ext(f)(P) + (1 —p) - ext(f)(P").

3. THE COMPUTATIONAL TREES

In [8] the author introduces a tree-wise approach to non-
deterministic computations. Here we give an overview of his
approach.

Consider a directed tree T'. To each node v of T the output
e(v), which is a word over an alphabet A, is corresponded.
If the node v is not a leaf, the e(v) should be a finite word.
For r, the root of T, e(r) = L. Informally each node of T
at depth n corresponds to a possible n*" step in the compu-
tation. For every edge (v, w) let a non—negative probability

p(v, w) be assigned such that whenever ws,...,w, are all
immediate successors of a node v then
m
> p(w,wi) =1. 2
i=1

We call such tree a computational tree.
Let r be the root of a computational tree T. For every
node v of T there exists exactly one path from r to v, say

(vo, ..., ¥m), with vo = r and v, = v. Then the evaluation
of v is the finite word
E(w) =e(va) - e(vm). (3)

(Note the order of e’s, also note that E(r) = L.) It is obvious
that if there exists a path from v to w, then E(v) C E(w),
where “C" is the prefix ordering on the words in A*.



Let L, be the set of all leaves of depth at most n on
a computational tree T. So L, C Lpy1. Let V, be the
union of L, and the set of nodes of depth n on T. We
define recursively the finite probability measure 7, on Vj:
mo(r) = 1, where r is the root of T; w41 (v) = ma(v), if
v € Ly Tnt1(v) = mn(w) - p(w, ), if v € Vi1 and (w,v) is
an edge with w € V,,. So 7,(v) is the probability to reach
the node v from the root r by passing over at most n edges.
It is easy to check that 7, is a probability measure on V,,.

Recall that the function E, defined by the equation (3),
represents the “output” of the computational tree. Now
that via probability measures 7, we have defined the prob-
ability to reach to each node, it is natural to extend this
probabilities to the outputs of these nodes. Thus we define
probability measures p, on A”* which correspond to succes-
sive evaluations at times n =0,1,2,...:

Z 7I'n(’l)),

v:E(v)=w

pr(w) := w e A" 4)

Then p, is in fact in FPr(D).
LEMMA 3.1. pn Cp prti-

Since (Pr(D), C) is a cpo, the increasing sequence (pn)n>0
has a limit, which justifies the next definition.

Definition 8. Let T be computational tree, and the prob-
ability measure p, (on D) be defined as (/). Then the
probability measure of T, denoted by “Probr,” is the
lub of the increasing sequence (pn)n>0;

Probr = |_I Dn-
n>0

The finite probability measure p, is called the n*" cross
section of Probr.

‘We now define an ordering on the trees to make them a
cpo.

Definition 4. Let T be a computational tree. Suppose
that 7" is a obtained from T by deleting all descendants of
some nodes of T. We say that T’ is a full subtree of T. For
computational trees Th and T> we let T3 Tt T> (or simply
T, C T,) if and only if T} is isomorphic with a full subtree
of Ty. (Here the isomorphism of trees is in the usual sense
of graph theory.)

THEOREM 3.2. The set of computational trees with order-
ing Cr is a cpo.

Definition 5. The cross—section at depth m of a com-
putational tree T, denoted by depth(T’;m), is obtained by
deleting all nodes on T with depth > m. If T is a finite tree
of depth m, then we let depth(T;k) = T, for k > m.

The following theorem shows a natural relation between
the n'™ cross section p, of Probr, defined in Definition 3,
and the probability of cross section trees of T.

THEOREM 3.3. Let T be a computational tree and T, =
depth(T;n). If p, is the n'" cross-section of Proby then
Ppn = Probr, .

THEOREM 3.4. The function that corresponds each com-
putational tree T' to its probability measure Probr is contin-
Uous.

Now we define an important operation on computational
trees which enable us to construct new computational trees
by “combining” the old ones.

Definition 6. Let T1,...,T, be computational trees with
roots ri,...,Tn, respectively. Suppose that ws, ..., w, are
finite words over the alphabet A, and t;,...,t, are non-
negative numbers such that ¢, + -« +¢, = 1. Then the
direct sum of T;’s with respect to w;’s and ¢;’s is the com-
putational tree T with output function e, edge—probability
function p and the root r such that r1,...,r, are the only
immediate successors of r, e(r;) = w;, p(r,r;) = t; and T
contains all descendants of r; in T; with the same outputs
and edge-probabilities. We denote T' by

t1A(w1)(T1) H---P tnA(lUn)(Tn)

To study the probability measure of a direct sum, we use
the following useful lemma and notation.

LEMMA 3.5. Let g be a finite word over the alphabet A.
We remind that D = A*UA*. Then the function fq: D —
D defined by fq(z) = qz is continuous.

Definition 7. We denote the probabilistic extension of f,
by V(q). More explicitly,

V{q): Pr(D) — Px(D)

such that for every probability measure P in Pr(D) and
every open set U in D we have

V(Q)(PXU) = P(f,"1(U))
= P{zeD:gz e U}

In the important case when U = V,, for some finite word
z € A*, we have

1 if z C q,
V(g)(P)(V:) = § P(V,) if z =gy,
0 otherwise.

THEOREM 3.6. Let 0 <t < 1, w and w’ be finite words
over the alphabet A, and

S =tA(w)(T) & (1 — t)A(w (T,
where T and T' are computational trees. Then

Probs = ¢V (w)(Probr) + (1 — t)V(w')(Proby).

The above theorem can easily be generalized to the direct
sum of a finite set of computational trees.

THEOREM 3.7. (The Completeness Theorem) For every
probability measure P on D there exists a computational tree
T such that P = Probr.

PrRoOOF. For simplicity, let us assume that the domain D
is based on the alphabet A = {0,1}; the proof can easily
be generalized to an arbitrary alphabet. At depth 0, the
only node is of course r, the root of T, with e(r) = L. If
P = {(1,1)} then r is the only node of T; otherwise r is
not a leaf.



Now let v be a node of T at depth n which is not a leaf,
and E(v) = ¢, where q is a finite word over A and the
output function E is defined by (3). Then the construction
of T implies that P(V,) # 0. We consider three temporary
successors vy, vo and v1 for v with

6(1)_]_) =1, 6(’00) =0, 6(’01) =1,

p(’U,'l)J_) = pL = PV,

P(V,
pv,wo) = po = s, (5)

— . PVa1)
p(v,v1) = ;= AR

‘Whenever the probability of the edges (v,v;), 2 = 1,0,1, is
zero then we delete that edge and the corresponding node
v;. The node v, is a leaf, and also if p(v,v1) = 1, then we
delete the edge (v,v.) and the node v will turn to be a leaf
of T.

Since P(Vy) = P(q)+P(Va0)+P(Vy1), hence the condition
(2) is satisfied, and T is in fact a computational tree.

It is clear from the definition of T that if v is a node
of T at depth n + 1 then |E(v)| = n or n+ 1. It is sim-
ple to verify that for every n > 1, if T, = depth(T;n)
then Probr, (V,) = P(V},), whenever |g| < n. Consequently,
Probr (V) = sup,, Probr, (V4) = P(V,). Therefore, by The-
orem 2.1, Probr = P. [

4. THE PROBABILISTIC AUTOMATA

Definition 8. A probabilistic automaton is a quadru-
ple

M= (Za‘AaShH) (6)

where Z is a finite nonempty set of states, A is a finite
nonempty alphabet, S1 € Z is a specified state called
the initial state, and II is the probabilistic transition re-
lation consisting of quadruples (S, S’,q,t) where § and S’
are states, ¢ € A" is a finite word over the alphabet A,
and t is a real number such that 0 < ¢t < 1. Moreover, if
(5,8;,qi,t:), i = 1,...,m, are all members of II such that
their first component is S, then ¢; + -« + ¢, = 1. We also
assume that for every S, §’' and ¢ there exists at most one ¢
such that (S,S’,q,t) € II; moreover, we assume that IT does
not contain any quadruple of the form (S, $', 1,1).

For states S and S, we let § — S’ if and only if for
some g and ¢ the quadruple (S, S5’,g,t) is a member of II.
We say S’ is accessible from S if S’ = S or there exists a
sequence Wi, ..., Wy, of states such that W; = S, W,, = 8’
and W; — Wiy, fori=1,...,m— 1. We assume that in
every probabilistic automaton all states are accessible from
the initial state.

A state S of the probabilistic automaton (6) is called a
non—terminal state if there are 8’ € Z, ¢ € A* and 0 <
t < 1 such that (S,9,q,t) € II. Otherwise, we call S a
terminal state, i.e., if S is terminal then S is not the first
component of any quadruple in II.

There exists a natural connection between probabilistic
automata and a subclass of computational trees. To show
this connection, we first define the tree of an automaton.

Definition 9. Let M = (Z,A,S:,II) be a probabilistic
automaton. The computational tree of M, denoted by

Tree(M), is defined as follows. Each node v of Tree(M) has
a label £(v) which is a state in Z. The label of the root of
Tree(M) is 51, the initial state. If a node v of Tree(M) has
label £(v) = S € Z and (S, Si,q1,1t1),...,(S, 5., @m, tm) are
all quadruples in II such that § — S}, then v has exactly m
immediate successor v1,...,vm with £(v;) = S}, e(vi) = @
and p(v,v;) =t;, forall 1 <1 < m.

It is easy to check that Tree(M) is actually a computational
tree.

Definition 10. Let T be a computational tree and v be a
node of T. In an obvious way, v and all its descendants form
a computational tree with v as its root. We denote this tree
by T'(v) and we call it the subtree of T originated at v.
For nodes » and v of T', we say u and v are equivalent and
write v = v if and only if T'(u) and T'(v) are isomorphic; i.e.,
they differ at most by interchanging the order of edges.

Clearly 22 is an equivalence relation on the set of nodes of
T. The set of equivalence classes is simply denoted by T/ 2.
We now have the following theorem which characterizes the
computational trees associated with probabilistic automata.

THEOREM 4.1. LetT be a computational tree. Then T/ =
s a finite set if and only if there exists a probabilistic au-
tomaton M such that T and Tree(M) are isomorphic.

Once we have defined the computational tree of a prob-
abilistic automaton, we can extend the notions associated
with computational trees to probabilistic automata.

Definition 11. Let M be a probabilistic automaton. Then
the probability measure of M is Proby..(m); i-e., the
probability measure generated by the computational tree of
M. We denote this probability measure simply by Probas.

We now investigate the probability measure of probabilis-
tic automata in detail. Let M = (Z, A, 51,1I) be a proba-
bilistic automaton, and Z = {S1,...,S5.}. We can obtain
various automata by considering various states of M as ini-
tial state. More specifically, let

M; = (Zia‘AvsiaHi)v (7)

where Z; is the set of states accessible from S;, and II; is
the restriction of II to Z; (hence My = M). For every state
Si,i=1,..., z, suppose that all quadruples in IT whose first
component is S; are as follows:

(Sia Sg,*(l)y‘ﬁvtzi) 5
(Si’ Sgi(zi)7 qii ) tii) :
If P; = Proba,; then, by Theorem 3.6,

P = Zt;ﬁv(q}) (Po:i)) - ®

Note that if the state S; is a terminal state, i.e., S; is not
the first component of any member of II, then Tree(M;) is
the empty computational tree and P; = {(L,1)}, the prob-
ability measure concentrated on L.

We now look at (8) from another point of view. Consider
the cpo D of all finite and infinite words over the alphabet
A.



Definition 12. The continuous function of the prob-
abilistic automaton M with probabilities defined by (8)
is the continuous function

& : (Pr(D))* — (Pr(D))?

defined as follows

D p (‘pla"'v(Pz)s (9)

wi(Qla"'sz) = th;V(q;) (ng‘(j)) ! (10)
j=1

and if S; is a terminal state then
0i(Q1,...,Q:) = Q. (11)

From (8) it follows that (Pi,...,P,) is a fixed point of
®r; we show that it is in fact the least fized point of ® .

THEOREM 4.2. Let M = (Z,A,S1,11) be a probabilistic
automaton with Z = {S1,...,S5.}. Suppose that the prob-
abilistic automaton M; is defined as (7). Let P;, defined
by (8), be the probability measure of M;, and let ®p =
(p1,...,92), defined by (9)-(11), be the continuous func-
tion of M. Then (P1,...,P,) is the least fixed point of ® ;.

Remark. In general the equations (8) from a system
which may be called stochastic system of linear homo-
geneous equations over Pr(D). Conversely, any such sys-
tem can be associated to a probabilistic automaton and its
least solution is the probability measure of that automaton.

S. THENORMAL FORM OF PROBABILIS-
TIC AUTOMATA

Before we start studying the properties of probabilistic
automata, we define a normal form of these automata. This
normal form will facilitate the future proofs. The proba-
bilistic automata M and M’', over the same alphabet A, are
called equivalent if for every finite word ¢ € A",

Probar(Vy) = Prob (V).

First we show that it is possible to get rid of probability—one
and empty-output edges.

LEMMA 5.1. Euvery probabilistic automaton M is equiva-
lent to another automaton M’ such that there is an edge of
the form (5,58, w,1) in M’ only if S is the initial state.

LEMMA 5.2. For every probabilistic automaton M there is
an equivalent automaton M’ such that M’ has no edge with
the empty output, except the edges of the form (S1,S,1,t)
where S1 is the initial state and S is a terminal state.

6. PROBABILITY OF LARGE OUTPUTS

In this section we study some basic properties of proba-
bility measures of probabilistic automata.

THEOREM 6.1. Let ®n = (¢1,...,9:) be the continuous
function of a probabilistic automaton M = (X, A, 51,11) de-
fined by (10) and (Py,...,P,) be its least fized point. Sup-
pose that for everyi=1,...,2, if S; is not a terminal staote,
there exists a finite word g such that 0 < P;(V,,) < 1. Then
there ezists a real number 0 < 7 < 1 and a positive integer

{1 such that for every finite word q, every i = 1,...,2 and
every integer k > 1

if lgl2k-p then PyV,)<7h (12)

Definition 13. A probability measure P is degenerate
if P(V,) is either 0 or 1 for every finite word gq. A proba-
bilistic automaton is a degenerate automaton if Proby,
is degenerate.

In the sequel, all automata are non-degenerate, unless the
contrary is explicitly stated.

THEOREM 6.2. A probability measure P is degenerate if
and only if P is a probability measure concentrated on a
(finite or infinite) word w.

7. DISTRIBUTION FUNCTIONS OF PROB-
ABILISTIC AUTOMATA

We identify a k letter alphabet A with the set of digits
{0,1,...,k — 1}. Every (nonempty) finite or infinite word
w over A can be considered as a radix k& expansion of a
real number X (w) in the interval [0, 1]. More explicitly, if
Ww=aas---
aj

— ki’

M

Xi(w) = (13)

If k, the size of the alphabet, is clear, we simply write “X”
instead of “X,”.

For every finite nonempty word ¢, we let R(q) to be the
set of all real numbers whose representation begins with ¢;
ie, if g=aias - -am then

a k™ 4aok™ 24 dayy k™ T 14a0k™ 724 Gamt1
%03 ’ 1L .

(14)

Not that for every finite word ¢, X (g0) = X (q) but R(q0) #
R(q).

Let, as before, D be the cpo of all finite and infinite words

over the alphabet A. Then X is a mapping from D into R.

R(q):=[

LemMMA 7.1. The mapping X maps V, to R(q); i.e., for
every finite nonempty word q,

Vo={weD: X(w)€ R(q)}.

Definition 14. Let M be a probabilistic automaton. The
probability measure Proby makes X (w) a random variable
and the distribution function of M, Fi : R — [0, 1], is
defined as follows

Fy(z) :==Proby{w € D: X(w) <z}

More generally, if T is a computational tree, we can define
the the distribution function of T, Fr : R — [0, 1], by
replacing Probys by Probr in the above identity.

(Note that Fy(z) =0 for z < 0 and Fy(z) =1for z > 1.)
In order to characterize the automaton with continuous
distribution functions, we need the following theorem.

THEOREM 7.2. The distribution function of a non-dege-
nerate probabilistic automaton is continuous if and only if it
has no terminal state.



8. ANALYTICITY OF THE DISTRIBUTION
FUNCTION

The following theorem is proved in [6]. In the final version
of this paper, we shall give an alternate proof of it in our
denotational semantics approach.

THEOREM 8.1. Let Far(x) be the distribution function of
a probabilistic automaton M with no terminal states. If
F(z) s analytic on the interval [c,d] C [0,1], with ¢ < d,
then Fu(z) is a polynomial on [c, d].

9. EQUIVALENCE OF AUTOMATA OVER
DIFFERENT ALPHABETS

The results of the next sections are about probabilistic
automata over the alphabet {0,1}. We notice that we will
get the same results by considering automata over alphabets
with more than two letters.

In general, this is not true that an automaton M; over
the alphabet A; can be simulated by some automaton M,
over another alphabet A;. This may happens when M; has
terminal states. We will give examples of this phenomenon
in the final version of this paper. We say alphabets A;
and A3 are equivalent if for every probabilistic automaton
M with no terminal state over the alphabet A; there is an
automaton M> over the alphabet Ay such that Fa, = Fu,,
and vice versa.

THEOREM 9.1. All finite alphabets are equivalent.

10. THE 0-PART AND 1-PART OF FINITE-
STATE DISTRIBUTION FUNCTIONS

From now on, we suppose that the alphabet of all au-
tomata is {0,1}, and D is the cpo of all finite and infinite
words on {0,1}

Definition 15. A distribution function F(z) on [0,1] is
called a finite-state distribution (fsd) if there exists a
probabilistic automaton M such that F(z) = Fum(z).

Consider the random variable X, defined by equation (13),
and distribution function Fr of a computational tree T'.
For every word w € D, X(0w) = 1X(w), and X(1w) =
3 + 2 X (w). From these relations it follows that if the com-
putation tree T; is the direct sum of T and T3 of the form

Ty = tA0)(T2) @ (1 — £)A(1)(T3),
and if Fj(z) is the distribution function of T;, i = 1,2,3,
then

if 0§z<%,

Fi(z) = {“w” (15)

t+(1-t)F3(22-1)  if l<az<1.

Definition 16. Every distribution function F(z) on [0, 1]
defines a probability measure Pr on D in the natural way.
For every finite word ¢ = a1 ---a, € D, let

_ a1 an 1 _ a1 On
Pp(Vq)—F<2 +ot T +2n) F(2+ 422,
Then Pr extends to a probability measure on D. By The-
orem 3.7 there exists a computational tree T» such that
Pp = Probr,. We call Pr the probability of the distri-
bution F' and Tr the tree of the distribution F.

By Theorem 3.7 (Page ) there exist computational trees
T, Ty and T, such that T = T and

T =tA0)(To) ® (1 — ) AQ)(T),

where t = F(3). Let F®)(z) be the distribution function of
T, for = 0, 1.

Definition 17. The distribution functions
FOz) and FY(2)

are called the O—part and 1—part of F(z), respectively.

With this notation we have

1 i 1

F(5)F©) (2z) if o<z<z

Flz)=9q 1 1 I ¢ 1)
F(3)+(-F(zNFMD(2z-1) if 5<e<

FO(g) = iﬁ; 0<z<1 (17)
FW(z) = FE) - F) 0<z<1 (18)

1-F(3)

Definition 18. The 0-parts of F®(z) and F((z) are de-
noted by F(%)(z) and F"'9(z), and the 1-parts are denoted
by FOU(z) and FO(z), respectively. Generally, for every
finite nonempty word w over {0,1}, the w—part of F(z) is
denoted by F™)(z), and the O-part and 1-part of F*)(z)
are denoted by F(*% (z) and F(*!)(z), respectively.

THEOREM 10.1. Suppose that Fi(z),..., Fn(x) are distri-
bution functions on [0,1]. Suppose that there exists an inte-

ger m 2> 1 such that every distribution function Fi(w)(:c), for
every w € {0,1}" of length m and every 1 < i < n, belongs
to the convez hull of {F1(z),...,Fu.(z)}. Then every Fi(z)
15 an fsd.

10.1 Generating distributions J,(z) = z»

In Section 8 we mentioned that the only analytic distribu-
tion on [0,1] generated by probabilistic automata are poly-
nomials. In this section we investigate the polynomial dis-
tributions J, (z) = ™ generated by these automata.

THEOREM 10.2. For every n > 1, the polynomial distri-
bution function Jn(z) = z" is an fsd.
Proor. Equation (16) implies
1 -1
Ju(z) = 2—nJ,§°)(2m) + Pz -1). (@19)
Equation (17) implies that J,go)(m) = Jn(z) = z". To com-

plete the proof we show that JV (z) is a convex combination
of J;j(z), 1 < j < n. Actually we have

J(l) 1 ( )Jn ]

Now the result follows from Theorem 10.1. [J




11.  GENERATING POLYNOMIAL DISTRI-
BUTIONS

In this section we deal with a problem posed by D. Knuth
and A. Yao [6]: “which distribution functions can be gen-
erated by probabilistic automata?” we solve this problem
completely as follows: every distribution function F(z) on
[0,1] is an fsd, except in the case that F'(z) has a root at
an irrational point of [0,1]. First we generalize the basic
notions of discrete dynamical systems [2].

Definition 19. Let G be a region in the Euclidean space
R". A random (discrete) dynamical system on G is
a pair (fo, f1) of mappings from G into G. For every finite
word g over {0,1}, the g—iterate of a point ¢ € G, denoted
by (¥, is defined recursively as follows

) = x,
CRI (mm)) ’

For every infinite word w over {0, 1}, the w—orbit of a point
z € G is the set

t=0,1.

z™) = {:c(") : q is finite and ¢ T w } .

For example, %' = fo (i (fo (fo (x)))).

For a point p € G, the basin of attraction of p, de-
noted by B(p), is the set of all 2 € G such that for every
infinite word w € {0,1}* the w-orbit 2’ (as a sequence)
tends to p. We say p is an attracting point if B(p) is a
neighborhood of p.

So, if & € B(p) then for every infinite word w € {0, 1} if
we let g, be the prefix of w of length n then lim, o ") =

Let F(z) = a1z + asx® + -+ + anz”™ be a distribution
function on [0, 1}. Let n(F) = (a1, a2,...,a,). We identify
F(z) with the point n{F) in the Euclidean space R*. We
define D, as the subset of R" consisting of n(F), where
F(z) = a1z+a22*+- - -+anz" is a distribution function; i.e.,
(a1,a2,...,a,) € Dy iff 37, a;2* is a distribution function
on [0, 1].

In the sequel we use the notation F(z) € D, for n(F) €
Dn. So F(z) € D, means that F(z) is a polynomial distri-
bution function on [0, 1] with degree < n; and if (Fi(z))k>1
is a sequence of distribution functions then limy_, o Fi(z) =
G(z) means that, in the Euclidean metric on R”, for the cor-
responding points we have limy_, oo n(Fi) = n(G).

For distribution function F(z) = a1z +aoz+ -+ anx™,
consider the distributions F(® () and F)(z), as defined by
the equations (17) and (18). Suppose that

FOz) = alz +ahz® + -+ ahz",
FO)=a{z+afz®+- - +a'z",
and define the following mappings on D:
a1, a,,... ,an) = (a}, b, ..., a),
65,1)((11, az,. ..
In this section we study the random dynamical system
(57(10),67(;1)) in detail. Note that D,, is a proper subset of

D for m < n, and 8% (i = 0,1) is the restriction of 65’ to
D

7a'n) = (a’lll7a',217 e aag)'

LEMMA 11.1. For every n > 1, the set D, is a compact
convez subset of R™.

Let 3321,c be the set of the points (a1,a2,...,an) € Dy
such that a1 = -+ = ar—1 = 0 and a # 0. Note that if
(a1,...,an) € DY 4, then az > 0.

Let D,, , be the set of the distribution functions F(z) €

D, which satisfy the following condition: E‘%;F(z) #0
z=1
and £ F(z)

dxd

=0forever 1 <j<k-1.
1

THEOREM 11.2. The mapping 69 has just n fized points
on Dy, which are Jp(x) = zF, k=1,...,n. For1 <k <
n—1, the distribution Ji(z) is an attracting fized point and
Jn(z) is a repelling point. For 1 < k < n — 1, under the
dyonamical system 650, the point Ji(z) attracts all points on
D

n,k*

PROOF. From the relation F(z) = F(3)F(®(2z), for 0 <
z < %, it easily follows that

6ay,a9,...,an) =
1 n—1 n—2

— (2 .2 ean). (20

7 F(3) ( ax a2 an). (20)
From (20) it easily follows that the distribution functions
Ji(z) = z* are fixed points of 6§, On the other hand, if
F(z)=ai1z+ a?mz o4 anz"™ is a fived point of 65 then, by
(20), we have 2 -p-a; = a;, for i = 1,...,n, where p = F(3).
Hence, if a; # 0 then F(3) = 27%. Therefore, if for some £,
ag # 0 then for every k # £ we have a; = 0. Consequently,
we have the following lemma

LEMMA 11.3. The only fized points of the mapping 60
are

Now some useful notations.
Definition 20. We write
(al,(IQ,- B ,ﬂ,n) < (blaan s 7bn)

if and only if a; < b; for every i = 1,...,n.

Definition 21. For a point p = (ai,az,...,a,) € R?,
if a1 # 0 then the slope—vector of p is the (n — 1)-
dimensional vector

SV(p)z(“l...,“—").

a1 ’ al

For the point p = (a1,a2,...,a,) € D,, with a1 # 0, the
slope-vector of 6510)(1)) is as follows

(0) = (82 % n
SV (5" (p)) N (2(11 "day 2"“1a1>'

Therefore, SV (6510)(17)) < $SV(p). Hence

, k]
lim SV ((6&‘”) (p)) =(0,0,...,0),



N [k] .
where (63)) denotes the k—fold iteration of 6. Con-

[k]
sequently, (67(10)) (p) converges to a point with the zero

slope-vector. But the point (1,0,...,0) (i.e., the distribu-
tion function Ji(z) = z) is the only point in D, with the
zero slope-vector. Therefore, Ji(z) = z is the only attract-
ing fixed point of the mapping 65 on the set Dn \ DY,
where

Dg = {(al,az,...

Note that DY is part of the boundary of D,, because for
every distribution function F(z) = a1z + asz? + - - + anz”
we have F'(0) = a1 > 0. By an argument similar to the
above one, it can be shown that all distribution functions
F(z) € DY ; tend to Ji(z) = z*. [

,0n) € Dp ra; =0}.

THEOREM 11.4. The distribution functions Gg(z) =1 —
(1 —=a)k, for k = 1,...,n, are the only fized points of the
mapping 65 on D,. Each point tends to one of Gi(z), 1 <
it <n—1; and G,(z) is a repelling point. More specifically,
under the dynamical system (551]), every point in ®3l,k tends

to G(z).

Proor. First we prove the following useful lemmas. We
remind the definition of F*)(z), the w—part of a distribu-
tion function F(z). We first derive a series of simple lemmas.
All of them can be proved by simple inductions.

LemMMA 11.5. For every F(z) € Dy, every a € [0,1] and
every integer k > 1 we have
0 at+2*—1
il G )

2(1-F(1-3))
where F'(z) is the first derivative of F(x).

d

dz

F(]k)(a) =

LEMMA 11.6. For every F(z) € D, we have

1
- i 1 [d
—1)H! —_
Sy (2

=1

F@)lo].

LEMMA 11.7. For every F(z) = a1z + - +anz™ € D,
and 1 <m < n we have

~—, . 1 [dtm
Z(‘l)]j“m.—k [WF(@

)

LEMMA 11.8. For every F(z) € D, and every integers
1<m<nandk>1 we have

der F (@)

a™ gk
I -
o (x)

z=1

_ T3E
smo 2MH(1-F(1-5))

Now we are ready to characterize the attracting points of
the dynamical system 5 on D,

A simple calculation shows that Gg)(z) = Gi(z), so
G () is a fixed point of 85",

First, suppose that F(z) € D} ; i.e. F'(1) # 0. Then,
since

Jim 2% (1~ F (1~ 3k)) = F'(1),

from Lemma 11.5 it follows that
d

lim —F) () =1,

Jim — for every z € [0, 1].

Therefore, G1(z) = z is the only attracting fixed point of

the mapping 65 on Dh1
Next, suppose that F'(1) = 0. Let

i=L2...,n.

If F(z) € D, 5, i-e., F"(1) # 0, then from Lemma 11.8, by
applying I"Hépital’s rule, it follows that

F(1-4
z1 = lim ( AZT)
MR- )
hF'(1—h)

A0 T— F(1— h)

. hF"' (1 — h)
=1 2 - =t ]
S ( F7(1-h)

=2.
A similar calculation implies

z1 = 2, Zo = —2, z3=24=" =2, =0.

This shows that if F(z) € D;, ,, then

n,23
klim F(lk)(z) =2z — z° = Ga(z).
— o0

Also if F(x) € D} 3, for the corresponding parameters z; we
have

21 =3, 2= —6, 28 =6, 24 =+ =2z, =0,

which implies

lim F(lk)(m) =3z — 32% 4+ 2° = G ().

k— o0

In general, if F(z) € D;, ., for 1 < m < n — 1, then, for
1<j<m,

- bm EpaH -
=Rl

(—1y

(m — j)!

b
=0

dj
= g7 Om(®)

and z; = 0 for m < j < n. Thus limg o F(lk)(m) =

The random dynamical system (5&0), 5£1))

Consider the set {0,1}* of binary words of length k. For
every w = ciCp - - - ¢, we define the order of w as the integer
(w) = Z;.“___] ¢;2%77. So (w) is the position of w in the



lezicographic ordering on {0,1}*. For example, the ordering
imposed on {0,1}® by (-) is as follows

000, 001, 010, 011, 100, 101, 110, 111.
Note that
{(w0) = 2 {w), (wl) = 2 (w) + 1. (21)

LEMMA 11.9. Suppose that F(z) € D, and w € {0,1}*
with j = (w). Then

(22)

THEOREM 11.10. The distribution function Ji(z) = z is
the attracting point of the random dynamical system

(0.40)

on Int(D,), where Int(D,) is the interior of D,.

PRrOOF. Let F(x) € D,. Then F(z) € Int(D,,) if and
only if F'(a) > 0 for every a € [0,1], especially Ji(z) €
Int (D). From Lemma 11.9 it follows that if for every a €
[0,1] we have F'(a) > 0, then

4 p) ()

Iz >0,

for every a € [0, 1] and every finite word w € {0,1}*. Hence,
if F(z) € Int(D») then F()(z) € Int(D,) for every w €

{0, 1},

Let € > 0. The intersection of the closed half-spaces

1 1
Fl—)<e+ —
<2m> SET o
form=1,2,...,n+1 and F(z) € D,, defines a polyhedron
Ce in R™ which contains Ji{z) = z. In other words, €. is

the closed subset of the points (ai,...,a,) € R™ satisfying
the following inequalities:

1 1
;Wmaz Setgm  m=12..,n+1
Then C. C € if € < ¢'; also we have (., ,Cc = {J1(z)}.
So, every neighborhood of J1(z) (i.e., every neighborhood of
the point (1,0,...,0)) in R® contains some €, for sufficiently
small € > 0.

Let w € {0,1}* and j = (w). Then from Lemma 11.9 it
follows that

F) (L) _ P+ 5c) — F
am

where

2
IA
Q
IA
QH
+
>

e
IA
w
IA
N"rt

Thus, 0 < |a — 8| < 5. Since F'(t) # 0 for every ¢ € [0, 1],
therefore,

; (w) -
Hence, for every finite word w with sufficiently large length,
we have F(")(z) € €., for small ¢ > 0. [J

From equation (17) it follows that F(®) () can be obtained
as follows: first restrict F(z) to the closed interval [0, 3]; we
obtain an increasing function

[0,3] — [0, F (3)];

if we re—scale both axes such that the interval [O, -;—] on the
z—axis became [0, 1] and the interval [0, F(3)] on the y-axis
became [0, 1}, then we obtain the graph of F(®(z). A similar
construction, with restriction of F(z) to [}, 1] (accompanied
by a re-scaling), leads to the graph of F(!)(z). By an in-
ductive construction, the graph of F(‘“)(m), for binary word
w, is obtained.

THEOREM 11.11. If Hi(xz),..., Hn(2) are fsd’s, then any
convex combination of them is also an fsd.

LemMMA 11.12. Each distribution function in Int(D,) is
an fsd.

PrOOF. Let Hi(z),..., Hy+1(z) be vertices of a simplex
§ inside Int(D,) which contains J1(z) = z. If w € {0,1}"
has sufficiently large length then, by Theorem 11.10, the
distribution function Hi("’)(m), for every 1 <i < mn+1, be-
longs to the convex hull of { Hi(z),...,Hnt1(z)}. There-
fore, Theorem 10.1 implies that each H;(z) is an fsd.

For every F(z) € Int(D,), Theorem 11.10 implies that
F®™)(z) is in § for finite binary word w with sufficiently
large length; and Theorem 11.11 implies F(*)(z) is an fsd.
Thus, from Theorem 10.1 it follows that F(z) is an fsd. [

We now study the distribution functions on the boundary
of D,. We divide these functions to two classes: one is the
class of functions F'(z) such that all roots of F'(z) in the
interval [0, 1] are rational, and the other class consists of the
rest. We will show that all distribution functions in the first
class are fsd, and the functions in the second class are not.
For the proof in the case of each class we need new notions
which we will develop.

LEMMA 11.13. Let F(z) € Dy and F'(0) =0 or F'(1) =
0. Then F(z) is an fsd.

ProOF. We show that F'(z) can be generated by an au-
tomaton over the binary alphabet {0,1}. Fist suppose that
F'(0) = 0. Then F®™)(z), for every w = 0*1 with k > 0, is
in Int(D,), and by Lemma 11.12 is an fsd. As discussed in
the proof of Theorem 11.2, F(x) tends to one of the fixed
points Jo(z) = 22, ..., Ju_1(z) = 2" !, under the dynami-
cal system 6. The points Ja(z),...,Jn—1(z) are interior
points of the intersection of D,, and the hyper—plane a; = 0.
So, there are points Hi(z),...,Hi(z) in this intersection
such that Ja2(z),...,Jn—1(z) are in G, the convex hull of
Hi(z),...,Hi(z) and consequently F(z) is an fsd.

A similar argument shows that all rational polynomial
distribution functions F'(z) such that F'(1) = 0 are fsd. [



THEOREM 11.14. If the distribution function F(x) is on
the boundary of Dn and every root of F'(x) in the interval
[0,1] is rational, then F'(z) is an fsd.

Definition 22. Let F(z) be an fsd generated by the au-
tomaton M = (%, {0,1}, S1,1I) with || = k. For each S; €
3, the automaton M; is defined as the sub-automaton of M
with S; as its initial state. So M; = M. Let F;(z) be the dis-
tribution function of M;. We call the set {Fi(z),..., Fr(z)}
as a set of the companions of F(z).

Definition 23. Let F(z) € Dn. We define R(F(z)) to be
the set of o € [0, 1] such that d—%FWl(x)\
w € {0,1}".

= 0, for some

=

LeEMMA 11.15. If F(z) € Dn, then R(F(z)) is a finite
set.

THEOREM 11.16. If F(z) € D, and F'(a) = 0, for some
irrational 0 < @ < 1. Then F(z) is not an fsd.

ProOOF. Let B, 0 < t < 1, be the set of all distribution
functions F(z) € D, such that ¢ is the only root of F'{z)
in the closed interval [0, 1]. From equations (17) and (18) it
follows that if F(z) € B, then the followings hold.

(i)if 0 < t < L then F©(z) € By, and F(z) € Int(Dn);

(i) if L <t < 1 then F{')(z) € By and FO(g) €
Int(Dr).

Finally, if ¢t = 5 then FO)(z) e DL, and FV(z) € D}
and in this case F'(z) is an fsd.

Consider now the following dynamical system on [0, 1];

b(z) = 2z if0<z <3,
T 21 ifi<z<l

This is the well-known baker map and is chaotic on [0, 1]
(see [2] for details); i.e., it has sensitive dependence on the
initial condition, it has dense orbits, and its periodic points
are dense in the interval [0,1]. It can be shown that all ra-
tional points in [0, 1} are periodic and every irrational point
has dense orbit.

Let t # 1 and F(z) € B:. Then FOY(g) or F(z) is
in Byyy if 0 £ < % or % < t < 1, respectively. Now,
for every infinite word w, the w-path of F(z) under the
random dynamical system (6%0),653)) is in Int(Dn) except

for exactly one infinite word weo which corresponds to the
behavior of b(t). More explicitly, if we let

. 20 if 0 <bl™@) <1,
™ L <) <1,

then weo = €081€2 - - - . Therefore,

el
{b[m](t) cm=0,1,2,.. }

If t is irrational then the set on the right-hand side is infinite,
and Lemma 11.15 implies that F(z) is not an fsd. [

[aelo,1]: Rl ()
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